Pipeline
BasePipeline
Bases: Generic[T]
, ABC
Abstract base class for creating and managing data processing pipelines.
The BasePipeline class provides a framework for building modular data processing pipelines by allowing users to add, remove, and configure components with defined dependencies and execution order. Components can be added at specific positions, grouped into stages, and connected via input/output connectors.
This is an abstract base class that should be subclassed to create specific pipeline implementations.
ATTRIBUTE | DESCRIPTION |
---|---|
_components |
Ordered list of pipeline components
TYPE:
|
_stages |
Components grouped by processing stage
TYPE:
|
_built_pipeline |
Compiled pipeline function
TYPE:
|
_input_connector |
Connector for processing input data
TYPE:
|
_output_connector |
Connector for processing output data
TYPE:
|
_output_template |
Template string for formatting pipeline outputs
TYPE:
|
_model_config |
Configuration for the pipeline model
TYPE:
|
Example
class MyPipeline(BasePipeline[str]): ... def configure_pipeline(self, config: ModelConfig) -> None: ... self.add_node(preprocess, stage="preprocessing") ... self.add_node(process, stage="processing") ... self.add_node(postprocess, stage="postprocessing") ... pipeline = MyPipeline() result = pipeline("input text")
Source code in healthchain/pipeline/base.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
|
stages
property
writable
Returns a human-readable representation of the pipeline stages.
add_input(connector)
Adds an input connector to the pipeline.
This method sets the input connector for the pipeline, which is responsible for processing the input data before it's passed to the pipeline components.
PARAMETER | DESCRIPTION |
---|---|
connector
|
The input connector to be added to the pipeline.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
Note
Only one input connector can be set for the pipeline. If this method is called multiple times, the last connector will overwrite the previous ones.
Source code in healthchain/pipeline/base.py
add_node(component=None, *, position='default', reference=None, stage=None, name=None, input_model=None, output_model=None, dependencies=[])
Adds a component node to the pipeline.
PARAMETER | DESCRIPTION |
---|---|
component
|
The component to be added. It can be either a BaseComponent object or a callable function. Defaults to None.
TYPE:
|
position
|
The position at which the component should be added in the pipeline. Valid values are "default", "first", "last", "after", and "before". Defaults to "default".
TYPE:
|
reference
|
The name of the component after or before which the new component should be added. Only applicable when position is "after" or "before". Defaults to None.
TYPE:
|
stage
|
The stage to which the component belongs. Defaults to None.
TYPE:
|
name
|
The name of the component. Defaults to None, in which case the name of the function will be used.
TYPE:
|
input_model
|
The input Pydantic model class for validating the input data. Defaults to None.
TYPE:
|
output_model
|
The output Pydantic model class for validating the output data. Defaults to None.
TYPE:
|
dependencies
|
The list of component names that this component depends on. Defaults to an empty list.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
The original component if component is None, otherwise the wrapper function. |
Source code in healthchain/pipeline/base.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
|
add_output(connector)
Adds an output connector to the pipeline.
This method sets the output connector for the pipeline, which is responsible for processing the output data after it has passed through all pipeline components.
PARAMETER | DESCRIPTION |
---|---|
connector
|
The output connector to be added to the pipeline.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
Note
Only one output connector can be set for the pipeline. If this method is called multiple times, the last connector will overwrite the previous ones.
Source code in healthchain/pipeline/base.py
build()
Builds and returns a pipeline function that applies a series of components to the input data. Returns: pipeline: A function that takes input data and applies the ordered components to it. Raises: ValueError: If a circular dependency is detected among the components.
Source code in healthchain/pipeline/base.py
configure_pipeline(model_config)
abstractmethod
Configure the pipeline based on the provided model configuration.
This method should be implemented by subclasses to add specific components and configure the pipeline according to the given model configuration. The configuration typically involves: 1. Setting up input/output connectors 2. Adding model components based on the model source 3. Adding any additional processing nodes 4. Configuring the pipeline stages and execution order
PARAMETER | DESCRIPTION |
---|---|
model_config
|
Configuration object containing: - source: Model source (e.g. huggingface, spacy, langchain) - model: Model identifier or path - task: Optional task name (e.g. summarization, ner) - path: Optional local path to model files - kwargs: Additional model configuration parameters
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
If the method is not implemented by a subclass. |
Example
def configure_pipeline(self, config: ModelConfig): ... # Add FHIR connector for input/output ... connector = FhirConnector() ... self.add_input(connector) ... ... # Add model component ... model = self.get_model_component(config) ... self.add_node(model, stage="processing") ... ... # Add output formatting ... self.add_node(OutputFormatter(), stage="formatting") ... self.add_output(connector)
Source code in healthchain/pipeline/base.py
from_local_model(path, source, task=None, template=None, template_path=None, **kwargs)
classmethod
Load pipeline from a local model path.
PARAMETER | DESCRIPTION |
---|---|
path
|
Path to local model files/directory
TYPE:
|
source
|
Model source (e.g. "huggingface", "spacy")
TYPE:
|
task
|
Task identifier for the model. Defaults to None.
TYPE:
|
template
|
Optional template string for formatting model output.
TYPE:
|
template_path
|
Optional path to template file for formatting model output.
TYPE:
|
**kwargs
|
Additional configuration options passed to the model. e.g. temperature, max_length, etc.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
BasePipeline
|
Configured pipeline instance.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If source is not a valid ModelSource. |
Examples:
>>> # Load local HuggingFace model
>>> pipeline = Pipeline.from_local_model(
... "models/my_summarizer",
... source="huggingface",
... task="summarization",
... temperature=0.7
... )
>>>
>>> # Load local SpaCy model
>>> pipeline = Pipeline.from_local_model(
... "models/en_core_sci_md",
... source="spacy",
... disable=["parser"]
... )
>>>
>>> # Load with output template
>>> template = '''{"summary": "{{ model_output }}"}'''
>>> pipeline = Pipeline.from_local_model(
... "models/gpt_model",
... source="huggingface",
... template=template
... )
Source code in healthchain/pipeline/base.py
from_model_id(model_id, source='huggingface', task='text-generation', template=None, template_path=None, **kwargs)
classmethod
Load pipeline from a model identifier.
PARAMETER | DESCRIPTION |
---|---|
model_id
|
Model identifier (e.g. HuggingFace model ID, SpaCy model name)
TYPE:
|
source
|
Model source. Defaults to "huggingface". Can be "huggingface", "spacy".
TYPE:
|
task
|
Task identifier for the model. Defaults to "text-generation".
TYPE:
|
template
|
Optional template string for formatting model output.
TYPE:
|
template_path
|
Optional path to template file for formatting model output.
TYPE:
|
**kwargs
|
Additional configuration options passed to the model. e.g. temperature, max_length, etc.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
BasePipeline
|
Configured pipeline instance.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If source is not a valid ModelSource. |
Examples:
>>> # Load HuggingFace model
>>> pipeline = Pipeline.from_model_id(
... "facebook/bart-large-cnn",
... task="summarization",
... temperature=0.7
... )
>>>
>>> # Load SpaCy model
>>> pipeline = Pipeline.from_model_id(
... "en_core_sci_md",
... source="spacy",
... disable=["parser"]
... )
>>>
>>> # Load with output template
>>> template = '''{"summary": "{{ model_output }}"}'''
>>> pipeline = Pipeline.from_model_id(
... "gpt-3.5-turbo",
... source="huggingface",
... template=template
... )
Source code in healthchain/pipeline/base.py
load(pipeline, source, task='text-generation', template=None, template_path=None, **kwargs)
classmethod
Load a pipeline from a pre-built pipeline object (e.g. LangChain chain or HuggingFace pipeline).
PARAMETER | DESCRIPTION |
---|---|
pipeline
|
A callable pipeline object (e.g. LangChain chain, HuggingFace pipeline)
TYPE:
|
source
|
Source of the pipeline. Can be "langchain" or "huggingface".
TYPE:
|
task
|
Task identifier used to retrieve model outputs. Defaults to "text-generation".
TYPE:
|
template
|
Template string for formatting outputs. Defaults to None.
TYPE:
|
template_path
|
Path to template file. Defaults to None.
TYPE:
|
**kwargs
|
Additional configuration options passed to the pipeline.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
BasePipeline
|
Configured pipeline instance.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If pipeline is not callable or source is invalid. |
Examples:
>>> # Load LangChain pipeline
>>> from langchain_core.prompts import ChatPromptTemplate
>>> from langchain_openai import ChatOpenAI
>>> chain = ChatPromptTemplate.from_template("What is {input}?") | ChatOpenAI()
>>> pipeline = Pipeline.load(chain, source="langchain", temperature=0.7)
>>>
>>> # Load HuggingFace pipeline
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10)
>>> pipeline = Pipeline.load(pipe, source="huggingface")
Source code in healthchain/pipeline/base.py
remove(component_name)
Removes a component from the pipeline.
PARAMETER | DESCRIPTION |
---|---|
component_name
|
The name of the component to be removed.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the component is not found in the pipeline. |
RETURNS | DESCRIPTION |
---|---|
None
|
None |
Logs
DEBUG: When the component is successfully removed. WARNING: If the component fails to be removed after attempting to do so.
Source code in healthchain/pipeline/base.py
replace(old_component_name, new_component)
Replaces a component in the pipeline with a new component.
PARAMETER | DESCRIPTION |
---|---|
old_component_name
|
The name of the component to be replaced.
TYPE:
|
new_component
|
The new component to replace the old component with.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the old component is not found in the pipeline. |
ValueError
|
If the new component is not a BaseComponent or a callable. |
ValueError
|
If the new component callable doesn't have the correct signature. |
Logs
DEBUG: When the component is successfully replaced.
Source code in healthchain/pipeline/base.py
ModelConfig
dataclass
Configuration for model initialization
Source code in healthchain/pipeline/base.py
ModelSource
Pipeline
Bases: BasePipeline
, Generic[T]
Default Pipeline class for creating a basic data processing pipeline. This class inherits from BasePipeline and provides a default implementation of the configure_pipeline method, which does not add any specific components.
Source code in healthchain/pipeline/base.py
configure_pipeline(model_path)
Configures the pipeline by adding components based on the provided model path. This default implementation does not add any specific components.
PARAMETER | DESCRIPTION |
---|---|
model_path
|
The path to the model used for configuring the pipeline.
TYPE:
|
Source code in healthchain/pipeline/base.py
PipelineNode
dataclass
Bases: Generic[T]
Represents a node in a pipeline.
ATTRIBUTE | DESCRIPTION |
---|---|
func |
The function to be applied to the data.
TYPE:
|
position |
The position of the node in the pipeline. Defaults to "default".
TYPE:
|
reference |
The reference for the relative position of the node. Name should be the "name" attribute of another node. Defaults to None.
TYPE:
|
stage |
The stage of the node in the pipeline. Group nodes by stage e.g. "preprocessing". Defaults to None.
TYPE:
|
name |
The name of the node. Defaults to None.
TYPE:
|
dependencies |
The list of dependencies for the node. Defaults to an empty list.
TYPE:
|