Containers
BaseDocument
dataclass
Bases: DataContainer[str]
Base document container for raw text content.
Source code in healthchain/io/containers/base.py
DataContainer
dataclass
Bases: Generic[T]
A generic container for data.
This class represents a container for data with a specific type T.
ATTRIBUTE | DESCRIPTION |
---|---|
data |
The data stored in the container.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
to_dict |
Converts the container's data to a dictionary. |
to_json |
Converts the container's data to a JSON string. |
from_dict |
Dict[str, Any]) -> "DataContainer": Creates a DataContainer instance from a dictionary. |
from_json |
str) -> "DataContainer": Creates a DataContainer instance from a JSON string. |
Source code in healthchain/io/containers/base.py
Document
dataclass
Bases: BaseDocument
A document container that extends BaseDocument with rich annotation capabilities.
This class extends BaseDocument to handle textual document data and annotations from various sources. It serves as the main data structure passed through processing pipelines, accumulating annotations and analysis results at each step.
The Document class provides a comprehensive representation that can include: - Raw text and basic tokenization - NLP annotations (tokens, entities, embeddings, spaCy docs) - FHIR resources through the fhir property (problem list, medication list, allergy list) - Clinical decision support results through the cds property (cards, actions) - ML model outputs (Hugging Face, LangChain)
ATTRIBUTE | DESCRIPTION |
---|---|
nlp |
Container for NLP-related annotations like tokens and entities
TYPE:
|
fhir |
Container for FHIR resources and CDS context
TYPE:
|
cds |
Container for clinical decision support results
TYPE:
|
models |
Container for ML model outputs
TYPE:
|
Example
doc = Document(data="Patient has hypertension")
Add set continuity of care lists
doc.fhir.problem_list = [Condition(...)] doc.fhir.medication_list = [MedicationStatement(...)]
Add FHIR resources
doc.fhir.add_resources([Patient(...)], "Patient")
Add a document with a parent
parent_id = doc.fhir.add_document(DocumentReference(...), parent_id="123")
Add CDS results
doc.cds.cards = [Card(...)] doc.cds.actions = [Action(...)]
Inherits from
BaseDocument: Provides base document functionality and raw text storage
Source code in healthchain/io/containers/document.py
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
|
__post_init__()
Initialize the document with basic tokenization if needed.
Source code in healthchain/io/containers/document.py
update_problem_list_from_nlp()
Updates the document's problem list by extracting medical entities from the spaCy annotations.
This method looks for entities in the document's spaCy annotations that have associated SNOMED CT concept IDs (CUIs). For each valid entity found, it creates a new FHIR Condition resource and adds it to the document's problem list.
The method requires that: 1. A spaCy doc has been added to the document's NLP annotations 2. The entities in the spaCy doc have the 'cui' extension attribute set
Note
- Currently defaults to using SNOMED CT coding system
- Uses a hardcoded patient reference "Patient/123"
- Preserves any existing conditions in the problem list
Source code in healthchain/io/containers/document.py
Tabular
dataclass
Bases: DataContainer[DataFrame]
A container for tabular data, wrapping a pandas DataFrame.
ATTRIBUTE | DESCRIPTION |
---|---|
data |
The pandas DataFrame containing the tabular data.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__post_init__ |
Validates that the data is a pandas DataFrame. |
columns |
Property that returns a list of column names. |
index |
Property that returns the DataFrame's index. |
dtypes |
Property that returns a dictionary of column names and their data types. |
column_count |
Returns the number of columns in the DataFrame. |
row_count |
Returns the number of rows in the DataFrame. |
get_dtype |
str): Returns the data type of a specific column. |
__iter__ |
Returns an iterator over the column names. |
__len__ |
Returns the number of rows in the DataFrame. |
describe |
Returns a string description of the tabular data. |
remove_column |
str): Removes a column from the DataFrame. |
from_csv |
str, **kwargs): Class method to create a Tabular object from a CSV file. |
from_dict |
Dict[str, Any]): Class method to create a Tabular object from a dictionary. |
to_csv |
str, **kwargs): Saves the DataFrame to a CSV file. |
Source code in healthchain/io/containers/tabular.py
base
BaseDocument
dataclass
Bases: DataContainer[str]
Base document container for raw text content.
Source code in healthchain/io/containers/base.py
DataContainer
dataclass
Bases: Generic[T]
A generic container for data.
This class represents a container for data with a specific type T.
ATTRIBUTE | DESCRIPTION |
---|---|
data |
The data stored in the container.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
to_dict |
Converts the container's data to a dictionary. |
to_json |
Converts the container's data to a JSON string. |
from_dict |
Dict[str, Any]) -> "DataContainer": Creates a DataContainer instance from a dictionary. |
from_json |
str) -> "DataContainer": Creates a DataContainer instance from a JSON string. |
Source code in healthchain/io/containers/base.py
document
CdsAnnotations
dataclass
Container for Clinical Decision Support (CDS) results.
This class stores and manages outputs from clinical decision support systems, including CDS Hooks cards and suggested clinical actions. The cards contain recommendations, warnings, and other decision support content that can be displayed to clinicians. Actions represent specific clinical tasks or interventions that are suggested based on the analysis.
Example
cds = CdsAnnotations() cds.cards = [Card(summary="Consider aspirin")] cds.actions = [Action(type="create", description="Order aspirin")]
Source code in healthchain/io/containers/document.py
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
|
actions
property
writable
Get the current list of suggested clinical actions.
cards
property
writable
Get the current list of CDS Hooks cards.
Document
dataclass
Bases: BaseDocument
A document container that extends BaseDocument with rich annotation capabilities.
This class extends BaseDocument to handle textual document data and annotations from various sources. It serves as the main data structure passed through processing pipelines, accumulating annotations and analysis results at each step.
The Document class provides a comprehensive representation that can include: - Raw text and basic tokenization - NLP annotations (tokens, entities, embeddings, spaCy docs) - FHIR resources through the fhir property (problem list, medication list, allergy list) - Clinical decision support results through the cds property (cards, actions) - ML model outputs (Hugging Face, LangChain)
ATTRIBUTE | DESCRIPTION |
---|---|
nlp |
Container for NLP-related annotations like tokens and entities
TYPE:
|
fhir |
Container for FHIR resources and CDS context
TYPE:
|
cds |
Container for clinical decision support results
TYPE:
|
models |
Container for ML model outputs
TYPE:
|
Example
doc = Document(data="Patient has hypertension")
Add set continuity of care lists
doc.fhir.problem_list = [Condition(...)] doc.fhir.medication_list = [MedicationStatement(...)]
Add FHIR resources
doc.fhir.add_resources([Patient(...)], "Patient")
Add a document with a parent
parent_id = doc.fhir.add_document(DocumentReference(...), parent_id="123")
Add CDS results
doc.cds.cards = [Card(...)] doc.cds.actions = [Action(...)]
Inherits from
BaseDocument: Provides base document functionality and raw text storage
Source code in healthchain/io/containers/document.py
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
|
__post_init__()
Initialize the document with basic tokenization if needed.
Source code in healthchain/io/containers/document.py
update_problem_list_from_nlp()
Updates the document's problem list by extracting medical entities from the spaCy annotations.
This method looks for entities in the document's spaCy annotations that have associated SNOMED CT concept IDs (CUIs). For each valid entity found, it creates a new FHIR Condition resource and adds it to the document's problem list.
The method requires that: 1. A spaCy doc has been added to the document's NLP annotations 2. The entities in the spaCy doc have the 'cui' extension attribute set
Note
- Currently defaults to using SNOMED CT coding system
- Uses a hardcoded patient reference "Patient/123"
- Preserves any existing conditions in the problem list
Source code in healthchain/io/containers/document.py
FhirData
dataclass
Container for FHIR resource data and its context.
Stores and manages clinical data in FHIR format. Access document references within resources easily through convenience functions.
Also allows you to set common continuity of care lists, such as a problem list, medication list, and allergy list. These collections are accessible as properties of the class instance.
Properties
bundle: The FHIR bundle containing resources prefetch_resources: Dictionary of CDS Hooks prefetch resources problem_list: List of Condition resources medication_list: List of MedicationStatement resources allergy_list: List of AllergyIntolerance resources
Example
fhir = FhirData()
Add prefetch resources from CDS request
fhir.prefetch_resources = {"patient": patient_resource}
Add document to bundle
doc_id = fhir.add_document_reference(document)
Get document with relationships
doc_family = fhir.get_document_reference_family(doc_id)
Access clinical lists
conditions = fhir.problem_list
Source code in healthchain/io/containers/document.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
|
allergy_list
property
writable
Get allergy list from the bundle.
bundle
property
writable
Returns the FHIR Bundle if it exists.
medication_list
property
writable
Get medication list from the bundle.
prefetch_resources
property
writable
Returns the prefetch FHIR resources.
problem_list
property
writable
Get problem list from the bundle. Problem list items are stored as Condition resources in the bundle. See: https://www.hl7.org/fhir/condition.html
add_document_reference(document, parent_id=None, relationship_type='transforms')
Adds a DocumentReference resource to the FHIR bundle and establishes relationships between documents if a parent_id is provided. The relationship is tracked using the FHIR relatesTo element with a specified relationship type. See: https://build.fhir.org/documentreference-definitions.html#DocumentReference.relatesTo
PARAMETER | DESCRIPTION |
---|---|
document
|
The DocumentReference to add to the bundle
TYPE:
|
parent_id
|
Optional ID of the parent document. If provided, establishes a relationship between this document and its parent.
TYPE:
|
relationship_type
|
The type of relationship to establish with the parent document. Defaults to "transforms". This is used in the FHIR relatesTo element's code. See: http://hl7.org/fhir/valueset-document-relationship-type
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
The ID of the added document. If the document had no ID, a new UUID-based ID is generated.
TYPE:
|
Source code in healthchain/io/containers/document.py
add_resources(resources, resource_type, replace=False)
Add resources to the working bundle.
Source code in healthchain/io/containers/document.py
get_document_reference_family(document_id)
Get a DocumentReference resource and all its related resources based on the relatesTo element in the FHIR standard. See: https://build.fhir.org/documentreference-definitions.html#DocumentReference.relatesTo
PARAMETER | DESCRIPTION |
---|---|
document_id
|
ID of the DocumentReference resource to find relationships for
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, Any]
|
Dict containing: 'document': The requested DocumentReference resource 'parents': List of parent DocumentReference resources 'children': List of child DocumentReference resources 'siblings': List of DocumentReference resources sharing the same parent |
Source code in healthchain/io/containers/document.py
get_document_references_readable(include_data=True, include_relationships=True)
Get DocumentReferences resources with their content and optional relationship data in a human-readable dictionary format.
PARAMETER | DESCRIPTION |
---|---|
include_data
|
If True, decode and include the document data (default: True)
TYPE:
|
include_relationships
|
If True, include related document information (default: True)
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List of documents with metadata and optionally their content and relationships |
Source code in healthchain/io/containers/document.py
get_prefetch_resources(key)
Get resources of a specific type from the prefetch bundle.
get_resources(resource_type)
Get resources of a specific type from the working bundle.
ModelOutputs
dataclass
Container for storing and managing third-party integration model outputs.
This class stores outputs from different NLP/ML frameworks like Hugging Face and LangChain, organizing them by task type. It also maintains a list of generated text outputs across frameworks.
ATTRIBUTE | DESCRIPTION |
---|---|
_huggingface_results |
Dictionary storing Hugging Face model outputs, keyed by task name.
TYPE:
|
_langchain_results |
Dictionary storing LangChain outputs, keyed by task name.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
add_output |
str, task: str, output: Any): Adds a model output for a specific source and task. For text generation tasks, also extracts and stores the generated text. |
get_output |
str, task: str, default: Any = None) -> Any: Gets the model output for a specific source and task. Returns default if not found. |
get_generated_text |
Returns the list of generated text outputs |
Source code in healthchain/io/containers/document.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
get_generated_text(source, task)
Returns generated text outputs for a given source and task.
Handles different output formats for Hugging Face and LangChain. For Hugging Face, it extracts the last message content from chat-style outputs and common keys like "generated_text", "summary_text", and "translation". For LangChain, it converts JSON outputs to strings, and returns the output as is if it is already a string.
PARAMETER | DESCRIPTION |
---|---|
source
|
Framework name (e.g., "huggingface", "langchain").
TYPE:
|
task
|
Task name for retrieving generated text.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[str]
|
List[str]: List of generated text outputs, or an empty list if none. |
Source code in healthchain/io/containers/document.py
NlpAnnotations
dataclass
Container for NLP-specific annotations and results.
This class stores various NLP annotations and processing results from text analysis, including preprocessed text, tokens, named entities, embeddings and spaCy documents.
ATTRIBUTE | DESCRIPTION |
---|---|
_preprocessed_text |
The preprocessed version of the input text.
TYPE:
|
_tokens |
List of tokenized words from the text.
TYPE:
|
_entities |
Named entities extracted from the text, with their labels and positions.
TYPE:
|
_embeddings |
Vector embeddings generated from the text.
TYPE:
|
_spacy_doc |
The processed spaCy Doc object.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
add_spacy_doc |
SpacyDoc): Processes a spaCy Doc to extract tokens and entities. |
get_spacy_doc |
Returns the stored spaCy Doc object. |
get_tokens |
Returns the list of tokens. |
set_tokens |
List[str]): Sets the token list. |
set_entities |
List[Dict[str, Any]]): Sets the named entities list. |
get_entities |
Returns the list of named entities. |
get_embeddings |
Returns the vector embeddings. |
set_embeddings |
List[float]): Sets the vector embeddings. |
Source code in healthchain/io/containers/document.py
tabular
Tabular
dataclass
Bases: DataContainer[DataFrame]
A container for tabular data, wrapping a pandas DataFrame.
ATTRIBUTE | DESCRIPTION |
---|---|
data |
The pandas DataFrame containing the tabular data.
TYPE:
|
METHOD | DESCRIPTION |
---|---|
__post_init__ |
Validates that the data is a pandas DataFrame. |
columns |
Property that returns a list of column names. |
index |
Property that returns the DataFrame's index. |
dtypes |
Property that returns a dictionary of column names and their data types. |
column_count |
Returns the number of columns in the DataFrame. |
row_count |
Returns the number of rows in the DataFrame. |
get_dtype |
str): Returns the data type of a specific column. |
__iter__ |
Returns an iterator over the column names. |
__len__ |
Returns the number of rows in the DataFrame. |
describe |
Returns a string description of the tabular data. |
remove_column |
str): Removes a column from the DataFrame. |
from_csv |
str, **kwargs): Class method to create a Tabular object from a CSV file. |
from_dict |
Dict[str, Any]): Class method to create a Tabular object from a dictionary. |
to_csv |
str, **kwargs): Saves the DataFrame to a CSV file. |