Containers
BaseDocument
dataclass
Bases: DataContainer[str]
Base document container for raw text content.
Source code in healthchain/io/containers/base.py
DataContainer
dataclass
Bases: Generic[T]
A generic container for data.
This class represents a container for data with a specific type T.
| ATTRIBUTE | DESCRIPTION |
|---|---|
data |
The data stored in the container.
TYPE:
|
| METHOD | DESCRIPTION |
|---|---|
to_dict |
Converts the container's data to a dictionary. |
to_json |
Converts the container's data to a JSON string. |
from_dict |
Dict[str, Any]) -> "DataContainer": Creates a DataContainer instance from a dictionary. |
from_json |
str) -> "DataContainer": Creates a DataContainer instance from a JSON string. |
Source code in healthchain/io/containers/base.py
Document
dataclass
Bases: BaseDocument
Main document container for processing textual and clinical data in HealthChain.
The Document class is the primary structure used throughout annotation and analytics pipelines, accumulating transformations, extractions, and results from each stage. It seamlessly integrates raw text, NLP annotations, FHIR resources, clinical decision support (CDS) results, and ML model outputs in one object.
Features
- Accepts text, FHIR Bundles/resources, or lists of FHIR resources as input.
- Provides basic tokenization and supports integration with NLP models (spaCy, transformers).
- Stores and manipulates clinical FHIR data via the .fhir property (access to bundles, problem lists, meds, allergies, etc.).
- Encapsulates CDS Hooks-style decision support cards and suggested actions via the .cds property.
- Stores outputs from external ML/LLM models: HuggingFace, LangChain, etc.
| ATTRIBUTE | DESCRIPTION |
|---|---|
nlp |
NLP output (tokens, entities, embeddings, spaCy doc)
TYPE:
|
fhir |
FHIR resources and context (problem list, medication, allergy, etc.)
TYPE:
|
cds |
Clinical decision support (cards and actions)
TYPE:
|
models |
Results from ML/LLM models (HuggingFace, LangChain, etc.)
TYPE:
|
text |
The text content of the document (if available).
TYPE:
|
data |
The original input supplied (raw text, Bundle, resource, or list of resources)
TYPE:
|
Usage example
doc = Document(data="Patient has hypertension") doc.nlp._tokens ['Patient', 'has', 'hypertension'] doc.fhir.problem_list = [Condition(...)] doc.cds.cards = [Card(...)] doc.models.huggingface_results = ... for token in doc: ... print(token)
Inherits from
BaseDocument
Source code in healthchain/io/containers/document.py
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 | |
__iter__()
Iterate through the document's tokens.
| RETURNS | DESCRIPTION |
|---|---|
Iterator[str]
|
Iterator[str]: Iterator over the document tokens. |
__len__()
Return the length of the document's text.
| RETURNS | DESCRIPTION |
|---|---|
int
|
Character length of the document text.
TYPE:
|
__post_init__()
Post-initialization setup to process textual or FHIR data.
- If input data is a FHIR Bundle, stores it and extracts OperationOutcome and Provenance resources.
- If input data is a list of FHIR resources, wraps them in a Bundle.
- For text input, sets .text field accordingly.
- Performs basic whitespace tokenization if necessary.
Source code in healthchain/io/containers/document.py
update_problem_list_from_nlp(patient_ref='Patient/123', coding_system='http://snomed.info/sct', code_attribute='cui')
Populate or update the problem list using entities extracted via NLP.
This method looks for entities with associated medical codes and creates FHIR Condition resources from them. It supports a two-step process: 1. NER: Extract entities from text (spaCy, HuggingFace, etc.) 2. Entity Linking: Add medical codes to those entities 3. Problem List Creation: Convert linked entities to FHIR conditions (this method)
The method extracts from: 1. spaCy entities with extension attributes (e.g., ent._.cui) 2. Generic entities in the NLP annotations container (framework-agnostic)
TODO: make this more generic and support other resource types
| PARAMETER | DESCRIPTION |
|---|---|
patient_ref
|
FHIR reference to the patient (default: "Patient/123")
TYPE:
|
coding_system
|
Coding system URI for the conditions (default: SNOMED CT)
TYPE:
|
code_attribute
|
Name of the attribute containing the medical code (default: "cui")
TYPE:
|
Notes
- Preserves any existing problem list Conditions.
- Supports framework-agnostic extraction (spaCy and dict entities).
- For spaCy, looks for entity extension attribute (e.g. ent._.cui).
- For non-spaCy, expects codes as dict keys (ent["cui"], etc.).
Source code in healthchain/io/containers/document.py
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | |
word_count()
Return the number of word tokens in the document.
| RETURNS | DESCRIPTION |
|---|---|
int
|
The count of tokenized words in the document.
TYPE:
|
Tabular
dataclass
Bases: DataContainer[DataFrame]
A container for tabular data, wrapping a pandas DataFrame.
| ATTRIBUTE | DESCRIPTION |
|---|---|
data |
The pandas DataFrame containing the tabular data.
TYPE:
|
| METHOD | DESCRIPTION |
|---|---|
__post_init__ |
Validates that the data is a pandas DataFrame. |
columns |
Property that returns a list of column names. |
index |
Property that returns the DataFrame's index. |
dtypes |
Property that returns a dictionary of column names and their data types. |
column_count |
Returns the number of columns in the DataFrame. |
row_count |
Returns the number of rows in the DataFrame. |
get_dtype |
str): Returns the data type of a specific column. |
__iter__ |
Returns an iterator over the column names. |
__len__ |
Returns the number of rows in the DataFrame. |
describe |
Returns a string description of the tabular data. |
remove_column |
str): Removes a column from the DataFrame. |
from_csv |
str, **kwargs): Class method to create a Tabular object from a CSV file. |
from_dict |
Dict[str, Any]): Class method to create a Tabular object from a dictionary. |
to_csv |
str, **kwargs): Saves the DataFrame to a CSV file. |
Source code in healthchain/io/containers/tabular.py
base
BaseDocument
dataclass
Bases: DataContainer[str]
Base document container for raw text content.
Source code in healthchain/io/containers/base.py
DataContainer
dataclass
Bases: Generic[T]
A generic container for data.
This class represents a container for data with a specific type T.
| ATTRIBUTE | DESCRIPTION |
|---|---|
data |
The data stored in the container.
TYPE:
|
| METHOD | DESCRIPTION |
|---|---|
to_dict |
Converts the container's data to a dictionary. |
to_json |
Converts the container's data to a JSON string. |
from_dict |
Dict[str, Any]) -> "DataContainer": Creates a DataContainer instance from a dictionary. |
from_json |
str) -> "DataContainer": Creates a DataContainer instance from a JSON string. |
Source code in healthchain/io/containers/base.py
document
CdsAnnotations
dataclass
Container for Clinical Decision Support (CDS) results.
This class stores and manages outputs from clinical decision support systems, including CDS Hooks cards and suggested clinical actions. The cards contain recommendations, warnings, and other decision support content that can be displayed to clinicians. Actions represent specific clinical tasks or interventions that are suggested based on the analysis.
| ATTRIBUTE | DESCRIPTION |
|---|---|
_cards |
CDS Hooks cards containing clinical recommendations, warnings, or other decision support content.
TYPE:
|
_actions |
Suggested clinical actions that could be taken based on the CDS analysis.
TYPE:
|
Example
cds = CdsAnnotations() cds.cards = [Card(summary="Consider aspirin")] cds.actions = [Action(type="create", description="Order aspirin")]
Source code in healthchain/io/containers/document.py
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 | |
actions
property
writable
Get the current list of suggested clinical actions.
cards
property
writable
Get the current list of CDS Hooks cards.
Document
dataclass
Bases: BaseDocument
Main document container for processing textual and clinical data in HealthChain.
The Document class is the primary structure used throughout annotation and analytics pipelines, accumulating transformations, extractions, and results from each stage. It seamlessly integrates raw text, NLP annotations, FHIR resources, clinical decision support (CDS) results, and ML model outputs in one object.
Features
- Accepts text, FHIR Bundles/resources, or lists of FHIR resources as input.
- Provides basic tokenization and supports integration with NLP models (spaCy, transformers).
- Stores and manipulates clinical FHIR data via the .fhir property (access to bundles, problem lists, meds, allergies, etc.).
- Encapsulates CDS Hooks-style decision support cards and suggested actions via the .cds property.
- Stores outputs from external ML/LLM models: HuggingFace, LangChain, etc.
| ATTRIBUTE | DESCRIPTION |
|---|---|
nlp |
NLP output (tokens, entities, embeddings, spaCy doc)
TYPE:
|
fhir |
FHIR resources and context (problem list, medication, allergy, etc.)
TYPE:
|
cds |
Clinical decision support (cards and actions)
TYPE:
|
models |
Results from ML/LLM models (HuggingFace, LangChain, etc.)
TYPE:
|
text |
The text content of the document (if available).
TYPE:
|
data |
The original input supplied (raw text, Bundle, resource, or list of resources)
TYPE:
|
Usage example
doc = Document(data="Patient has hypertension") doc.nlp._tokens ['Patient', 'has', 'hypertension'] doc.fhir.problem_list = [Condition(...)] doc.cds.cards = [Card(...)] doc.models.huggingface_results = ... for token in doc: ... print(token)
Inherits from
BaseDocument
Source code in healthchain/io/containers/document.py
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 | |
__iter__()
Iterate through the document's tokens.
| RETURNS | DESCRIPTION |
|---|---|
Iterator[str]
|
Iterator[str]: Iterator over the document tokens. |
__len__()
Return the length of the document's text.
| RETURNS | DESCRIPTION |
|---|---|
int
|
Character length of the document text.
TYPE:
|
__post_init__()
Post-initialization setup to process textual or FHIR data.
- If input data is a FHIR Bundle, stores it and extracts OperationOutcome and Provenance resources.
- If input data is a list of FHIR resources, wraps them in a Bundle.
- For text input, sets .text field accordingly.
- Performs basic whitespace tokenization if necessary.
Source code in healthchain/io/containers/document.py
update_problem_list_from_nlp(patient_ref='Patient/123', coding_system='http://snomed.info/sct', code_attribute='cui')
Populate or update the problem list using entities extracted via NLP.
This method looks for entities with associated medical codes and creates FHIR Condition resources from them. It supports a two-step process: 1. NER: Extract entities from text (spaCy, HuggingFace, etc.) 2. Entity Linking: Add medical codes to those entities 3. Problem List Creation: Convert linked entities to FHIR conditions (this method)
The method extracts from: 1. spaCy entities with extension attributes (e.g., ent._.cui) 2. Generic entities in the NLP annotations container (framework-agnostic)
TODO: make this more generic and support other resource types
| PARAMETER | DESCRIPTION |
|---|---|
patient_ref
|
FHIR reference to the patient (default: "Patient/123")
TYPE:
|
coding_system
|
Coding system URI for the conditions (default: SNOMED CT)
TYPE:
|
code_attribute
|
Name of the attribute containing the medical code (default: "cui")
TYPE:
|
Notes
- Preserves any existing problem list Conditions.
- Supports framework-agnostic extraction (spaCy and dict entities).
- For spaCy, looks for entity extension attribute (e.g. ent._.cui).
- For non-spaCy, expects codes as dict keys (ent["cui"], etc.).
Source code in healthchain/io/containers/document.py
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | |
word_count()
Return the number of word tokens in the document.
| RETURNS | DESCRIPTION |
|---|---|
int
|
The count of tokenized words in the document.
TYPE:
|
FhirData
dataclass
Container for FHIR resource data and its context.
Stores and manages clinical data in FHIR format. Access document references within resources easily through convenience functions.
Also allows you to set common continuity of care lists, such as a problem list, medication list, and allergy list. These collections are accessible as properties of the class instance.
TODO: make problem, meds, allergy lists configurable
Properties
bundle: The FHIR bundle containing resources prefetch_resources: Dictionary of CDS Hooks prefetch resources problem_list: List of Condition resources medication_list: List of MedicationStatement resources allergy_list: List of AllergyIntolerance resources
Example
fhir = FhirData()
Add prefetch resources from CDS request
fhir.prefetch_resources = {"patient": patient_resource}
Add document to bundle
doc_id = fhir.add_document_reference(document)
Get document with relationships
doc_family = fhir.get_document_reference_family(doc_id)
Access clinical lists
conditions = fhir.problem_list
Source code in healthchain/io/containers/document.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | |
allergy_list
property
writable
Get allergy list from the bundle.
bundle
property
writable
Returns the FHIR Bundle if it exists.
medication_list
property
writable
Get medication list from the bundle.
operation_outcomes
property
writable
Get extracted OperationOutcome resources separated from the bundle.
patient
property
Get the first Patient resource from the bundle (convenience accessor).
Returns None if no Patient resources are present in the bundle. For bundles with multiple patients, use the patients property instead.
patients
property
Get all Patient resources from the bundle.
Most bundles contain a single patient, but some queries (e.g., family history, population queries) may return multiple patients. This property provides access to all Patient resources without removing them from the bundle.
prefetch_resources
property
writable
Returns the prefetch FHIR resources.
problem_list
property
writable
Get problem list from the bundle. Problem list items are stored as Condition resources in the bundle. See: https://www.hl7.org/fhir/condition.html
provenances
property
writable
Get extracted Provenance resources separated from the bundle.
add_document_reference(document, parent_id=None, relationship_type='transforms')
Adds a DocumentReference resource to the FHIR bundle and establishes relationships between documents if a parent_id is provided. The relationship is tracked using the FHIR relatesTo element with a specified relationship type. See: https://build.fhir.org/documentreference-definitions.html#DocumentReference.relatesTo
| PARAMETER | DESCRIPTION |
|---|---|
document
|
The DocumentReference to add to the bundle
TYPE:
|
parent_id
|
Optional ID of the parent document. If provided, establishes a relationship between this document and its parent.
TYPE:
|
relationship_type
|
The type of relationship to establish with the parent document. Defaults to "transforms". This is used in the FHIR relatesTo element's code. See: http://hl7.org/fhir/valueset-document-relationship-type
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
str
|
The ID of the added document. If the document had no ID, a new UUID-based ID is generated.
TYPE:
|
Source code in healthchain/io/containers/document.py
add_resources(resources, resource_type, replace=False)
Add resources to the working bundle.
Source code in healthchain/io/containers/document.py
get_document_reference_family(document_id)
Get a DocumentReference resource and all its related resources based on the relatesTo element in the FHIR standard. See: https://build.fhir.org/documentreference-definitions.html#DocumentReference.relatesTo
| PARAMETER | DESCRIPTION |
|---|---|
document_id
|
ID of the DocumentReference resource to find relationships for
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Dict[str, Any]
|
Dict containing: 'document': The requested DocumentReference resource 'parents': List of parent DocumentReference resources 'children': List of child DocumentReference resources 'siblings': List of DocumentReference resources sharing the same parent |
Source code in healthchain/io/containers/document.py
get_document_references_readable(include_data=True, include_relationships=True)
Get DocumentReferences resources with their content and optional relationship data in a human-readable dictionary format.
| PARAMETER | DESCRIPTION |
|---|---|
include_data
|
If True, decode and include the document data (default: True)
TYPE:
|
include_relationships
|
If True, include related document information (default: True)
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
List[Dict[str, Any]]
|
List of documents with metadata and optionally their content and relationships |
Source code in healthchain/io/containers/document.py
get_prefetch_resources(key)
Get resources of a specific type from the prefetch bundle.
get_resources(resource_type)
Get resources of a specific type from the working bundle.
ModelOutputs
dataclass
Container for storing and managing third-party integration model outputs.
This class stores outputs from different NLP/ML frameworks like Hugging Face and LangChain, organizing them by task type. It also maintains a list of generated text outputs across frameworks.
| ATTRIBUTE | DESCRIPTION |
|---|---|
_huggingface_results |
Dictionary storing Hugging Face model outputs, keyed by task name.
TYPE:
|
_langchain_results |
Dictionary storing LangChain outputs, keyed by task name.
TYPE:
|
| METHOD | DESCRIPTION |
|---|---|
add_output |
str, task: str, output: Any): Adds a model output for a specific source and task. For text generation tasks, also extracts and stores the generated text. |
get_output |
str, task: str, default: Any = None) -> Any: Gets the model output for a specific source and task. Returns default if not found. |
get_generated_text |
Returns the list of generated text outputs |
Source code in healthchain/io/containers/document.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | |
get_generated_text(source, task)
Returns generated text outputs for a given source and task.
Handles different output formats for Hugging Face and LangChain. For Hugging Face, it extracts the last message content from chat-style outputs and common keys like "generated_text", "summary_text", and "translation". For LangChain, it converts JSON outputs to strings, and returns the output as is if it is already a string.
| PARAMETER | DESCRIPTION |
|---|---|
source
|
Framework name (e.g., "huggingface", "langchain").
TYPE:
|
task
|
Task name for retrieving generated text.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
List[str]
|
List[str]: List of generated text outputs, or an empty list if none. |
Source code in healthchain/io/containers/document.py
NlpAnnotations
dataclass
Container for NLP-specific annotations and results.
This class stores various NLP annotations and processing results from text analysis, including preprocessed text, tokens, named entities, embeddings and spaCy documents.
| ATTRIBUTE | DESCRIPTION |
|---|---|
_preprocessed_text |
The preprocessed version of the input text.
TYPE:
|
_tokens |
List of tokenized words from the text.
TYPE:
|
_entities |
Named entities extracted from the text, with their labels and positions.
TYPE:
|
_embeddings |
Vector embeddings generated from the text.
TYPE:
|
_spacy_doc |
The processed spaCy Doc object.
TYPE:
|
| METHOD | DESCRIPTION |
|---|---|
add_spacy_doc |
SpacyDoc): Processes a spaCy Doc to extract tokens and entities. |
get_spacy_doc |
Returns the stored spaCy Doc object. |
get_tokens |
Returns the list of tokens. |
set_tokens |
List[str]): Sets the token list. |
set_entities |
List[Dict[str, Any]]): Sets the named entities list. |
get_entities |
Returns the list of named entities. |
get_embeddings |
Returns the vector embeddings. |
set_embeddings |
List[float]): Sets the vector embeddings. |
Source code in healthchain/io/containers/document.py
tabular
Tabular
dataclass
Bases: DataContainer[DataFrame]
A container for tabular data, wrapping a pandas DataFrame.
| ATTRIBUTE | DESCRIPTION |
|---|---|
data |
The pandas DataFrame containing the tabular data.
TYPE:
|
| METHOD | DESCRIPTION |
|---|---|
__post_init__ |
Validates that the data is a pandas DataFrame. |
columns |
Property that returns a list of column names. |
index |
Property that returns the DataFrame's index. |
dtypes |
Property that returns a dictionary of column names and their data types. |
column_count |
Returns the number of columns in the DataFrame. |
row_count |
Returns the number of rows in the DataFrame. |
get_dtype |
str): Returns the data type of a specific column. |
__iter__ |
Returns an iterator over the column names. |
__len__ |
Returns the number of rows in the DataFrame. |
describe |
Returns a string description of the tabular data. |
remove_column |
str): Removes a column from the DataFrame. |
from_csv |
str, **kwargs): Class method to create a Tabular object from a CSV file. |
from_dict |
Dict[str, Any]): Class method to create a Tabular object from a dictionary. |
to_csv |
str, **kwargs): Saves the DataFrame to a CSV file. |